KARIM ASHRAF SPACE.
  • Who Am I ?
  • WRITEUPS
    • What about Practice in Cyber Security?
    • Dark Side of VSCode
    • What about Cy-nix Machine?
    • Cyberdefenders Labs
      • Web Investigation Blue Team Lab
      • Red Stealer Blue Team Lab
      • WebStrike Blue Team Lab
      • BlueSky Ransomware Blue Team Lab
      • PsExec Hunt Blue Team Lab
      • OpenWire Blue Team Lab
      • 3CX Supply Chain Blue Team Lab
      • PoisonedCredentials Lab
      • Reveal Lab
    • Lets Defend
      • Incident Responder Path
        • Cybersecurity Incident Handling Guide
          • Introduction to Incident Handling
          • Incident Handling Steps
          • Preparation
          • Detection and Analysis
          • Containment, Eradication, and Recovery
          • Post-Incident Activity
        • Incident Response on Windows
          • How to Create Incident Response Plan?
          • Incident Response Procedure
          • 3 Important Things
          • Free Tools That Can Be Used
          • Live Memory Analysis
          • Task Scheduler
          • Services
          • Registry Run Keys / Startup Folder
          • Files
          • Checklist
        • Incident Response on Linux
          • How to Create Incident Response Plan?
          • Incident Response Procedure
          • 3 Important Things
          • Users and Groups
          • Processes
          • Files and File System
          • Mounts
          • Network
          • Service
          • Cron Job
          • SSH Authorized Keys
          • Bash_rc & Bash_profile
          • Useful Log Files
        • Hacked Web Server Analysis
          • Introduction to Hacked Web Server Analysis
          • Log Analysis on Web Servers
          • Attacks on Web Servers
          • Attacks Against Web Applications
          • Vulnerabilities on Servers
          • Vulnerabilities in Programming Language
          • Discovering the Web Shell
          • Hacked Web Server Analysis Example
        • Log Analysis with Sysmon
          • Introduction and Set Up of Sysmon
          • Detecting Mimikatz with Sysmon
          • Detecting Pass The Hash with Sysmon
          • Detecting Privilege Escalation with Sysmon
        • Forensic Acquisition and Triage
          • Introduction to Forensics Acquisition and Triage
          • Acquiring Memory Image From Windows and Linux
          • Custom Image Using FTK and Mounting Image for Analysis
          • KAPE Targets for Acquisition
          • KAPE Modules for Triage and Analysis
          • Triage Using FireEye Redline
          • Acquisition and Triage of Disks Using Autopsy
        • Memory Forensics
          • What is Memory Forensics
          • Memory Analysis Procedures
        • Registry Forensics
          • Introduction to Windows Registry Forensics
          • Acquiring Registry Hives
          • Regedit and Registry Explorer
          • System, Users and Network Information
          • Shellbags
          • Shimcache
          • Amcache
          • Recent Files
          • Dialogue Boxes MRU
        • Event Log Analysis
          • Introduction to Event Logs
          • Event Log Analysis
          • Authentication Event Logs
          • Windows Scheduled Tasks Event Logs
          • Windows Services Event Logs
          • Account Management Events
          • Event Log Manipulation
          • Windows Firewall Event Logs
          • Windows Defender Event Logs
          • Powershell Command Execution Event logs
        • Browser Forensics
          • Introduction to Browser Forensics
          • Acquisition
          • Browser Artifacts
          • Tool: BrowsingHistoryView
          • Manual Browser Analysis
          • Hindsight Framework
        • GTFOBins
          • Introduction to GTFOBins
          • Shell
          • Command
          • Reverse Shell
          • Bind Shell
          • File Upload
          • File Download
          • Sudo
        • Hunting AD Attacks
          • Introduction to Active Directory
          • Hunting AS-REP Roasting Attack
          • Hunting for Kerberoasting Attacks
          • Hunting for LDAP Enumerations (Bloodhound_Sharphound)
          • Hunting for NTDS Database Dumping
          • Hunting for Golden Ticket Attacks
          • Hunting for NTLM Relay Attacks
        • Writing a Report on Security Incident
          • Introduction to Technical Writing
          • Reporting Standards
          • Reporting Style
          • Report Formatting
          • Report Templates
        • How to Prepare a Cyber Crisis Management Pla
          • Introduction to Crisis Management
          • General Preparation
          • Tools
          • Backups
          • Alerts and End of Crisis
        • Advanced Event Log Analysis
          • Process Creation
          • DNS Activity
          • File/Folder Monitoring
          • BITS Client Event Log
          • Network Connections Event Log
          • MSI Event Logs
        • USB Forensics
          • Introduction to USB Forensics
          • USB Registry Key
          • USB Event Logs
          • Folder Access Analysis via Shellbags
          • File Access Analysis via Jumplists
          • Automated USB Parsers Tools
        • Windows Disk Forensics
          • SRUM Database
          • Jumplists
          • Recycle Bin Artifacts
          • RDP Cache
          • Thumbnail Cache
    • BTLO LABS
      • Bruteforce BTLO
    • The Complete Active Directory Security Handbook
      • Introduction
      • Active Directory
      • Attack Technique 1: Pass the Hash: Use of Alternate Authentication Material (T1550)
      • Attack Technique 2: Pass the Ticket: Use of Alternate Authentication Material (T1550)
      • Attack Technique 3: Kerberoasting
      • Attack Technique 4: Golden Ticket Attack
      • Attack Technique 5: DCShadow Attack
      • Attack Technique 6: AS-REP Roasting
      • Attack Technique 7: LDAP Injection Attack
      • Attack Technique 8: PetitPotam NTLM Relay Attack on a Active Directory Certificate Services (AD CS)
      • Conclusion & References
    • Windows Privilege Escalation
      • Tools
      • Windows Version and Configuration
      • User Enumeration
      • Network Enumeration
      • Antivirus Enumeration
      • Default Writeable Folders
      • EoP - Looting for passwords
      • EoP - Incorrect permissions in services
      • EoP - Windows Subsystem for Linux (WSL)
      • EoP - Unquoted Service Paths
      • EoP - $PATH Interception
      • EoP - Named Pipes
      • EoP - Kernel Exploitation
      • EoP - AlwaysInstallElevated
      • EoP - Insecure GUI apps
      • EoP - Evaluating Vulnerable Drivers
      • EoP - Printers
      • EoP - Runas
      • EoP - Abusing Shadow Copies
      • EoP - From local administrator to NT SYSTEM
      • EoP - Living Off The Land Binaries and Scripts
      • EoP - Impersonation Privileges
      • EoP - Privileged File Write
      • References
      • Practical Labs
    • Advanced Log Analysis
      • Key Windows Event IDs for Cybersecurity Monitoring
      • Analyzing a Series of Failed Login Attempts from Multiple IP Addresses
      • Steps to Investigate Suspicious Outbound Network Traffic
      • Identifying and Responding to Lateral Movement within a Network
      • Distinguishing Between Legitimate and Malicious PowerShell Executions
      • Detecting and Analyzing a Potential Data Exfiltration Incident Using Log Data
      • Steps to Analyze PowerShell Logging (Event ID 4104) for Malicious Activity
      • How to Identify an Internal Pivot Attack Using Log Data
      • Indicators in Logs Suggesting a Privilege Escalation Attack
      • How to Detect Command and Control (C2) Communication Using Log Analysis
      • How to Analyze Logs to Detect a Brute-Force Attack on an RDP Service
      • How to Analyze Logs to Detect a Brute-Force Attack on an RDP Service
      • How to Detect the Use of Living-Off-the-Land Binaries (LOLBins) in Logs
      • How to Detect Malware Masquerading as a Legitimate Process Using Log Analysis
      • How to Detect and Analyze Lateral Movement Using Windows Event Logs
      • How to Detect Potential Ransomware Attacks in Their Early Stages Using Log Analysis
      • How to Detect and Analyze Privilege Escalation Using Windows Event Logs
      • How to Detect the Use of Mimikatz or Similar Tools in Log Data
      • How to Detect and Analyze DNS Tunneling Through Log Analysis
      • How to Detect a Pass-the-Hash (PtH) Attack Using Logs
      • How to Detect and Analyze an Attacker’s Use of a Remote Access Trojan (RAT) Using Log Data
      • How to Detect Lateral Movement Using Windows Event Logs
      • How to Detect and Investigate Data Exfiltration Using Logs
      • How to Identify and Analyze an Internal Phishing Campaign Using Email and System Logs
      • How to Detect and Analyze Ransomware Activity Using Logs
      • How to Detect Malicious PowerShell Activity Using Log Analysis
      • How to Detect and Respond to Brute-Force Attacks Using Log Data
      • How to Detect Privilege Escalation Attempts Using Windows Event Logs
      • How to Detect and Analyze Suspicious Domain Name Resolution Requests in DNS Logs
      • How to Detect and Respond to Unauthorized Access to Critical Files
      • How to Detect and Analyze Suspicious PowerShell Command Execution
      • How to Detect and Investigate Account Takeover (ATO) Attempts Using
      • How to Detect and Analyze the Use of Living Off the Land Binaries (LOLBins)
      • How to Detect and Investigate Lateral Movement
      • How to Detect and Investigate Data Exfiltration
      • How to Detect and Analyze Suspicious Activity Involving Service Accounts
      • How to Detect and Investigate Anomalous PowerShell Activity Related to Credential Dumping
      • How to Detect and Analyze the Execution of Unsigned or Malicious Executables
      • How to Detect and Investigate Abnormal Spikes in Network Traffic
    • Methods for Stealing Password in Browser
      • Important Tables and Columns
      • Important Queries
      • Profiles
      • Tools
        • HackBrowserData
        • Browser-password-stealer
        • BrowserPass
        • WebBrowserPassView
        • Infornito
        • Hindsight
        • BrowserFreak
        • BrowserStealer
  • The Ultimate Active Directory CheatSheet
  • COURSES SUMMARY
    • TCM SEC
      • TCM linux Privilege Escalation
      • TCM OSINT
    • The SecOps Group
      • Certified AppSec Practitioner exam
      • CNSP Review
    • Cybrary
      • Cybrary Offensive Pentesting
  • TIPS&TRICKS
    • Windows Shorcuts Arrow Remover
    • Kali KEX
    • Intel TurboBoost
    • Pentest_Copilot
    • Ferdium
    • Youtube Adblock_Bybass
    • Burb-Bambdas
    • Burb Customizer
    • BetterFox
Powered by GitBook
On this page
  • Scheduled Task Analysis in Incident Response
  • Detection Tools and Methods
  • 1. Autoruns (Sysinternals Tool)
  • 2. Task Scheduler (GUI)
  • 3. Command Line Interface (CLI)
  • Analyzing Deleted or Hidden Tasks
  • Steps for Log Analysis:
  • Key Takeaways
  1. WRITEUPS
  2. Lets Defend
  3. Incident Responder Path
  4. Incident Response on Windows

Task Scheduler

Scheduled Task Analysis in Incident Response

Scheduled tasks are a commonly abused persistence mechanism. Attackers use them to automate the execution of malicious scripts or commands at regular intervals, ensuring long-term access to a compromised system.


Detection Tools and Methods

1. Autoruns (Sysinternals Tool)

Purpose: Identify all auto-starting locations, including scheduled tasks, for persistence mechanisms.

Steps:

  1. Run Autoruns as Administrator.

  2. Navigate to the "Scheduled Tasks" tab:

    • Lists all tasks configured to run automatically.

  3. Filter Suspicious Tasks:

    • Focus on tasks without a publisher or those running from unusual locations.

  4. Analyze the Actions:

    • Example: A task named Update-Daily runs important.bat.

      • Inspection of important.bat reveals commands to create a new user (User123) and enable RDP, a clear indication of malicious activity.

2. Task Scheduler (GUI)

Purpose: Review scheduled tasks using the built-in Windows Task Scheduler.

Steps:

  1. Open Task Scheduler from the Start menu.

  2. Browse the Task Scheduler Library for all configured tasks.

  3. For each task:

    • Check the Action tab for the executable or script being triggered.

    • Look for suspicious file paths or unexpected scripts.

3. Command Line Interface (CLI)

Purpose: Analyze scheduled tasks in non-GUI environments or for quick queries.

Command:

schtasks /query /fo LIST /v

Output:

  • Task Name: Name of the scheduled task.

  • Task To Run: Path to the file or command being executed.

  • Next Run Time: When the task is scheduled to run next.

  • Status: Whether the task is enabled or disabled.

Manual Analysis:

  • Look for tasks with unusual names, commands, or locations.

  • Tasks executing from temporary or writable directories (e.g., C:\Users\Public, C:\Temp) warrant further investigation.


Analyzing Deleted or Hidden Tasks

Attackers often delete scheduled tasks after execution to avoid detection. However, these actions are logged, allowing forensic analysis even if the task no longer exists.

Log Sources:

  1. Task Scheduler Logs:

    • Path: Applications and Services Logs -> Microsoft -> Windows -> TaskScheduler -> Operational.evtx

  2. Security Logs:

    • Event ID 4698: A scheduled task was created.

    • Event ID 4702: A scheduled task was updated.


Steps for Log Analysis:

  1. Open Event Viewer.

  2. Navigate to TaskScheduler Operational Logs.

  3. Look for relevant Event IDs:

    • 4698: Creation of a scheduled task.

    • 4702: Modification of a scheduled task.

Example Analysis:

  • On 10/23/2021, a task was created that no longer exists in Task Scheduler.

  • Reviewing logs reveals the task executed malicious.exe, which was set to delete itself after execution.


Key Takeaways

  1. Scheduled Tasks as Persistence:

    • Used by attackers to maintain control, run malicious payloads, or gather system information periodically.

  2. Detection Tools:

    • Autoruns: Comprehensive visibility into auto-start mechanisms.

    • Task Scheduler GUI: Easy navigation and review.

    • schtasks: Quick CLI-based task enumeration.

  3. Deleted Tasks:

    • Even if attackers delete tasks, logs provide a historical view of task creation, updates, and execution.


What to Do:

  • Regular Analysis: Periodically review scheduled tasks.

  • Monitor Logs: Use Event Viewer to track task creation and modification.

  • Automate Checks: Integrate tools like Autoruns and centralized log monitoring (e.g., SIEM) to detect anomalies in scheduled tasks.

  • Investigate Suspicious Tasks: Focus on tasks executing from unusual directories or running unexpected commands.

By proactively identifying and analyzing scheduled tasks, incident responders can uncover hidden persistence mechanisms and remediate threats effectively.

PreviousLive Memory AnalysisNextServices

Last updated 7 months ago