KARIM ASHRAF SPACE.
  • Who Am I ?
  • WRITEUPS
    • What about Practice in Cyber Security?
    • Dark Side of VSCode
    • What about Cy-nix Machine?
    • Cyberdefenders Labs
      • Web Investigation Blue Team Lab
      • Red Stealer Blue Team Lab
      • WebStrike Blue Team Lab
      • BlueSky Ransomware Blue Team Lab
      • PsExec Hunt Blue Team Lab
      • OpenWire Blue Team Lab
      • 3CX Supply Chain Blue Team Lab
      • PoisonedCredentials Lab
      • Reveal Lab
    • Lets Defend
      • Incident Responder Path
        • Cybersecurity Incident Handling Guide
          • Introduction to Incident Handling
          • Incident Handling Steps
          • Preparation
          • Detection and Analysis
          • Containment, Eradication, and Recovery
          • Post-Incident Activity
        • Incident Response on Windows
          • How to Create Incident Response Plan?
          • Incident Response Procedure
          • 3 Important Things
          • Free Tools That Can Be Used
          • Live Memory Analysis
          • Task Scheduler
          • Services
          • Registry Run Keys / Startup Folder
          • Files
          • Checklist
        • Incident Response on Linux
          • How to Create Incident Response Plan?
          • Incident Response Procedure
          • 3 Important Things
          • Users and Groups
          • Processes
          • Files and File System
          • Mounts
          • Network
          • Service
          • Cron Job
          • SSH Authorized Keys
          • Bash_rc & Bash_profile
          • Useful Log Files
        • Hacked Web Server Analysis
          • Introduction to Hacked Web Server Analysis
          • Log Analysis on Web Servers
          • Attacks on Web Servers
          • Attacks Against Web Applications
          • Vulnerabilities on Servers
          • Vulnerabilities in Programming Language
          • Discovering the Web Shell
          • Hacked Web Server Analysis Example
        • Log Analysis with Sysmon
          • Introduction and Set Up of Sysmon
          • Detecting Mimikatz with Sysmon
          • Detecting Pass The Hash with Sysmon
          • Detecting Privilege Escalation with Sysmon
        • Forensic Acquisition and Triage
          • Introduction to Forensics Acquisition and Triage
          • Acquiring Memory Image From Windows and Linux
          • Custom Image Using FTK and Mounting Image for Analysis
          • KAPE Targets for Acquisition
          • KAPE Modules for Triage and Analysis
          • Triage Using FireEye Redline
          • Acquisition and Triage of Disks Using Autopsy
        • Memory Forensics
          • What is Memory Forensics
          • Memory Analysis Procedures
        • Registry Forensics
          • Introduction to Windows Registry Forensics
          • Acquiring Registry Hives
          • Regedit and Registry Explorer
          • System, Users and Network Information
          • Shellbags
          • Shimcache
          • Amcache
          • Recent Files
          • Dialogue Boxes MRU
        • Event Log Analysis
          • Introduction to Event Logs
          • Event Log Analysis
          • Authentication Event Logs
          • Windows Scheduled Tasks Event Logs
          • Windows Services Event Logs
          • Account Management Events
          • Event Log Manipulation
          • Windows Firewall Event Logs
          • Windows Defender Event Logs
          • Powershell Command Execution Event logs
        • Browser Forensics
          • Introduction to Browser Forensics
          • Acquisition
          • Browser Artifacts
          • Tool: BrowsingHistoryView
          • Manual Browser Analysis
          • Hindsight Framework
        • GTFOBins
          • Introduction to GTFOBins
          • Shell
          • Command
          • Reverse Shell
          • Bind Shell
          • File Upload
          • File Download
          • Sudo
        • Hunting AD Attacks
          • Introduction to Active Directory
          • Hunting AS-REP Roasting Attack
          • Hunting for Kerberoasting Attacks
          • Hunting for LDAP Enumerations (Bloodhound_Sharphound)
          • Hunting for NTDS Database Dumping
          • Hunting for Golden Ticket Attacks
          • Hunting for NTLM Relay Attacks
        • Writing a Report on Security Incident
          • Introduction to Technical Writing
          • Reporting Standards
          • Reporting Style
          • Report Formatting
          • Report Templates
        • How to Prepare a Cyber Crisis Management Pla
          • Introduction to Crisis Management
          • General Preparation
          • Tools
          • Backups
          • Alerts and End of Crisis
        • Advanced Event Log Analysis
          • Process Creation
          • DNS Activity
          • File/Folder Monitoring
          • BITS Client Event Log
          • Network Connections Event Log
          • MSI Event Logs
        • USB Forensics
          • Introduction to USB Forensics
          • USB Registry Key
          • USB Event Logs
          • Folder Access Analysis via Shellbags
          • File Access Analysis via Jumplists
          • Automated USB Parsers Tools
        • Windows Disk Forensics
          • SRUM Database
          • Jumplists
          • Recycle Bin Artifacts
          • RDP Cache
          • Thumbnail Cache
    • BTLO LABS
      • Bruteforce BTLO
    • The Complete Active Directory Security Handbook
      • Introduction
      • Active Directory
      • Attack Technique 1: Pass the Hash: Use of Alternate Authentication Material (T1550)
      • Attack Technique 2: Pass the Ticket: Use of Alternate Authentication Material (T1550)
      • Attack Technique 3: Kerberoasting
      • Attack Technique 4: Golden Ticket Attack
      • Attack Technique 5: DCShadow Attack
      • Attack Technique 6: AS-REP Roasting
      • Attack Technique 7: LDAP Injection Attack
      • Attack Technique 8: PetitPotam NTLM Relay Attack on a Active Directory Certificate Services (AD CS)
      • Conclusion & References
    • Windows Privilege Escalation
      • Tools
      • Windows Version and Configuration
      • User Enumeration
      • Network Enumeration
      • Antivirus Enumeration
      • Default Writeable Folders
      • EoP - Looting for passwords
      • EoP - Incorrect permissions in services
      • EoP - Windows Subsystem for Linux (WSL)
      • EoP - Unquoted Service Paths
      • EoP - $PATH Interception
      • EoP - Named Pipes
      • EoP - Kernel Exploitation
      • EoP - AlwaysInstallElevated
      • EoP - Insecure GUI apps
      • EoP - Evaluating Vulnerable Drivers
      • EoP - Printers
      • EoP - Runas
      • EoP - Abusing Shadow Copies
      • EoP - From local administrator to NT SYSTEM
      • EoP - Living Off The Land Binaries and Scripts
      • EoP - Impersonation Privileges
      • EoP - Privileged File Write
      • References
      • Practical Labs
    • Advanced Log Analysis
      • Key Windows Event IDs for Cybersecurity Monitoring
      • Analyzing a Series of Failed Login Attempts from Multiple IP Addresses
      • Steps to Investigate Suspicious Outbound Network Traffic
      • Identifying and Responding to Lateral Movement within a Network
      • Distinguishing Between Legitimate and Malicious PowerShell Executions
      • Detecting and Analyzing a Potential Data Exfiltration Incident Using Log Data
      • Steps to Analyze PowerShell Logging (Event ID 4104) for Malicious Activity
      • How to Identify an Internal Pivot Attack Using Log Data
      • Indicators in Logs Suggesting a Privilege Escalation Attack
      • How to Detect Command and Control (C2) Communication Using Log Analysis
      • How to Analyze Logs to Detect a Brute-Force Attack on an RDP Service
      • How to Analyze Logs to Detect a Brute-Force Attack on an RDP Service
      • How to Detect the Use of Living-Off-the-Land Binaries (LOLBins) in Logs
      • How to Detect Malware Masquerading as a Legitimate Process Using Log Analysis
      • How to Detect and Analyze Lateral Movement Using Windows Event Logs
      • How to Detect Potential Ransomware Attacks in Their Early Stages Using Log Analysis
      • How to Detect and Analyze Privilege Escalation Using Windows Event Logs
      • How to Detect the Use of Mimikatz or Similar Tools in Log Data
      • How to Detect and Analyze DNS Tunneling Through Log Analysis
      • How to Detect a Pass-the-Hash (PtH) Attack Using Logs
      • How to Detect and Analyze an Attacker’s Use of a Remote Access Trojan (RAT) Using Log Data
      • How to Detect Lateral Movement Using Windows Event Logs
      • How to Detect and Investigate Data Exfiltration Using Logs
      • How to Identify and Analyze an Internal Phishing Campaign Using Email and System Logs
      • How to Detect and Analyze Ransomware Activity Using Logs
      • How to Detect Malicious PowerShell Activity Using Log Analysis
      • How to Detect and Respond to Brute-Force Attacks Using Log Data
      • How to Detect Privilege Escalation Attempts Using Windows Event Logs
      • How to Detect and Analyze Suspicious Domain Name Resolution Requests in DNS Logs
      • How to Detect and Respond to Unauthorized Access to Critical Files
      • How to Detect and Analyze Suspicious PowerShell Command Execution
      • How to Detect and Investigate Account Takeover (ATO) Attempts Using
      • How to Detect and Analyze the Use of Living Off the Land Binaries (LOLBins)
      • How to Detect and Investigate Lateral Movement
      • How to Detect and Investigate Data Exfiltration
      • How to Detect and Analyze Suspicious Activity Involving Service Accounts
      • How to Detect and Investigate Anomalous PowerShell Activity Related to Credential Dumping
      • How to Detect and Analyze the Execution of Unsigned or Malicious Executables
      • How to Detect and Investigate Abnormal Spikes in Network Traffic
    • Methods for Stealing Password in Browser
      • Important Tables and Columns
      • Important Queries
      • Profiles
      • Tools
        • HackBrowserData
        • Browser-password-stealer
        • BrowserPass
        • WebBrowserPassView
        • Infornito
        • Hindsight
        • BrowserFreak
        • BrowserStealer
  • The Ultimate Active Directory CheatSheet
  • COURSES SUMMARY
    • TCM SEC
      • TCM linux Privilege Escalation
      • TCM OSINT
    • The SecOps Group
      • Certified AppSec Practitioner exam
      • CNSP Review
    • Cybrary
      • Cybrary Offensive Pentesting
  • TIPS&TRICKS
    • Windows Shorcuts Arrow Remover
    • Kali KEX
    • Intel TurboBoost
    • Pentest_Copilot
    • Ferdium
    • Youtube Adblock_Bybass
    • Burb-Bambdas
    • Burb Customizer
    • BetterFox
Powered by GitBook
On this page
  • Memory Acquisition in Incident Response
  • Acquiring Memory Image from Windows Systems
  • 2. FTK Imager
  • Acquiring Memory Image from Linux Systems
  • Post-Acquisition Analysis
  • Key Considerations
  • Key Points
  1. WRITEUPS
  2. Lets Defend
  3. Incident Responder Path
  4. Forensic Acquisition and Triage

Acquiring Memory Image From Windows and Linux

Memory Acquisition in Incident Response

Memory acquisition is an essential component of digital forensics during incident response. It captures a system's volatile state, preserving critical artifacts such as active processes, network connections, and in-memory malware for subsequent analysis.


Acquiring Memory Image from Windows Systems

1. Belkasoft Live RAM Capturer

  • Features:

    • Captures full volatile memory with a minimal system footprint.

    • Effective against anti-debugging and anti-dumping mechanisms.

    • Compatible with major Windows versions (including older systems like XP).

  • Usage:

    1. Download and run RamCapture64.exe as Administrator.

    2. Set the destination folder for the memory dump.

    3. Click Capture Memory.

    4. The output will be saved with a randomly generated filename for anonymity.

  • Advantages:

    • Minimal system interference, preserving the state of volatile data.

    • Effective in bypassing advanced malware defenses.


2. FTK Imager

  • Features:

    • A versatile forensic tool capable of capturing memory and disk images.

    • User-friendly interface for acquiring and validating evidence.

  • Usage:

    1. Launch FTK Imager as Administrator.

    2. Navigate to File > Capture Memory.

    3. Set the Destination Path and Filename.

    4. Optionally, check the box to include the system's pagefile.

    5. Click Capture Memory.

  • Limitations:

    • Potential errors during acquisition on heavily loaded systems.

    • May lack robustness compared to specialized tools like Belkasoft.


Acquiring Memory Image from Linux Systems

AVML (Accelerated Volatile Memory Locator)

  • Features:

    • Lightweight, single-binary tool with no dependencies.

    • Supports major Linux distributions and works with various memory sources (e.g., /dev/crash, /proc/kcore).

  • Usage:

    1. Download the AVML binary.

    2. Grant execution permissions:

      chmod +x avml
    3. Run AVML to acquire memory:

      ./avml Linux_Acquisition.raw
    4. Memory image is saved in the specified file.

  • Advantages:

    • Easy to deploy in both local and remote environments.

    • Can save directly to network shares or mounted drives.


Post-Acquisition Analysis

Windows Analysis Tools:

  • FireEye Redline:

    • Combines memory and disk analysis to detect malware and suspicious activities.

    • Useful for identifying persistence mechanisms and network behaviors.

  • Volatility:

    • Open-source framework for in-depth memory analysis.

    • Supports detection of malware, hidden processes, and injected code.

Linux Analysis Tools:

  • Volatility (Linux Support):

    • Provides plugins for analyzing Linux-specific memory artifacts like tasks, network connections, and files in memory.

  • Custom Scripts:

    • Analysts can develop or use existing Python scripts to parse Linux memory dumps for system-specific insights.


Key Considerations

  1. Data Integrity:

    • Hash acquired memory images using MD5 or SHA-256.

    • Example:

      md5sum memory_dump.raw
  2. Minimal System Footprint:

    • Execute tools from external media (USB drives) or remote shares to avoid altering the system's state.

  3. Storage Requirements:

    • Memory dumps can be large (gigabytes in size). Ensure sufficient storage space is available.

  4. Documentation:

    • Maintain detailed notes on acquisition steps, including timestamps, tools used, and hash values.


Key Points

Memory acquisition is a crucial step in preserving volatile evidence during incident response. Tools like Belkasoft Live RAM Capturer, FTK Imager, and AVML provide reliable methods for capturing memory on Windows and Linux systems. Proper handling and minimal system interaction are essential to maintain the integrity of the evidence for forensic analysis.

PreviousIntroduction to Forensics Acquisition and TriageNextCustom Image Using FTK and Mounting Image for Analysis

Last updated 7 months ago